Machine Learning with TensorFlow PDF

Rhonealpesinfo.fr Machine Learning with TensorFlow Image

AUTEUR: Nishant Shukla

TAILLE DU FICHIER: 2,34 MB

NOM DE FICHIER: Machine Learning with TensorFlow.pdf

ISBN: 9781617293870

DESCRIPTION

TensorFlow, Google's library for large-scale machine learning, simplifies often-complex computations by representing them as graphs and efficiently mapping parts of the graphs to machines in a cluster or to the processors of a single machine. Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. You'll learn the basics by working with classic prediction, classification, and clustering algorithms. Then, you'll move on to the money chapters : exploration of deep-learning concepts like autoencoders, recurrent neural networks, and reinforcement learning. Digest this book and you will be ready to use TensorFlow for machine-learning and deep-learning applications of your own. What's Inside : Matching your tasks to the right machine-learning and deep-learning approaches ; Visualizing algorithms with TensorBoard ; Understanding and using neural networks.

INFORMATION

AUTEUR: Nishant Shukla

TAILLE DU FICHIER: 5,30 MB

NOM DE FICHIER: Machine Learning with TensorFlow.pdf

ISBN: 9781617293870

TÉLÉCHARGER
LIRE EN LIGNE
Machine Learning with TensorFlow PDF. Découvrez de nouveaux livres avec rhonealpesinfo.fr. Télécharger un livre Machine Learning with TensorFlow en format PDF est plus facile que jamais.

TensorFlow 2.0 is designed to make building neural networks for machine learning easy, which is why TensorFlow 2.0 uses an API called Keras. The book 'Deep Learning in Python' by Francois Chollet, creator of Keras, is a great place to get started. Read chapters 1-4 to understand the fundamentals of ML from a programmer's perspective.

Machine Learning with TensorFlow. GETTING STARTED. Appx A Installation. Ch 1 A machine learningodyssey. Ch 2 TensorFlowessentials. CORE ALGORITHMS. Ch 3 Linear regressionand beyond. Ch 4 An introduction to classification. Ch 5 Automatically clusteringdata. Ch 6 Hidden Markovmodels. NEURAL NETWORKS. Ch 7 A peek into autoencoders. Ch 8 Reinforcement Learning. Ch 9 Convolutionalneural networks ...

LIVRES CONNEXES

La Cabane Magique Tome 28
Conversemos en clase - Nivel elemental-intermedio
Oeuvre et engagement de Frédéric Joliot-Curie
Je rentre en CM2 Pokémon
La place et le rôle du père
Hildegarde de Bingen - La sentinelle de l'invisible
Tristan et Yseult - Le porcher et la truie
Corps et âme - L'enfant prodige
Esquisse d'une nouvelle esthétique musicale et autres écrits
Les nouveaux militants
Penser l'événement